Korrelationskoeffizient nach Pearson berechnen und interpretieren (2024)

Veröffentlicht am 6. Juli 2020 von Valerie Benning. Aktualisiert am 14. Dezember 2022.

Der Korrelationskoeffizient nach Pearson, auch Korrelationskoeffizient nach Bravais-Pearson genannt, gibt uns Auskunft über den Zusammenhang von zwei metrisch skalierten Variablen.

Wir möchten bestimmen, ob ein Zusammenhang zwischen der Größe und dem Gewicht von Personen besteht und wie stark dieser Zusammenhang ist.

Da es sich um einen standardisierten Koeffizienten handelt, können wir Zusammenhänge anhand des Korrelationskoeffizienten miteinander vergleichen.

Scribbrs kostenlose Rechtschreibprüfung

Fehler kostenlos beheben

Inhaltsverzeichnis

  1. Den Korrelationskoeffizienten nach Pearson berechnen
  2. Formel zu Pearson‘s r
  3. Pearson‘s r richtig interpretieren
  4. Voraussetzungen für den Korrelationskoeffizient nach Pearson
  5. Ergebnisse der Korrelation in der Abschlussarbeit zusammenfassen
  6. Häufig gestellte Fragen

Den Korrelationskoeffizienten nach Pearson berechnen

Zur Berechnung des Korrelationskoeffizienten kannst du z. B. SPSS, Excel oder Google Tabellen verwenden.

Den Korrelationskoeffizienten mit Excel oder Google Tabellen berechnen

Wir stellen dir unsere Excel-Datei und Google-Tabellen-Datei zur Verfügung, damit du die Berechnung damit üben kannst.

Geh in eine leere Zelle und gib die Formel = KORREL () für Excel oder = CORREL () für Google Tabellen ein.

Wähle die Daten aus beiden Spalten aus und trenne sie mit einem Semikolon.

Du erhältst den Korrelationskoeffizienten der zwei Variablen, in diesem Fall Gewicht und Größe. Der Wert des Korrelationskoeffizienten muss dabei immer zwischen r = -1 und 1 liegen.

Den Korrelationskoeffizienten mit SPSS berechnen

Lade unsere SPSS-Datei herunter, damit du mit denselben Daten üben kannst.

SPSS

Um den Korrelationskoeffizienten mit SPSS zu berechnen, klicke im Menü auf:

  1. Analysieren
  2. Korrelation
  3. Bivariat

In dem neuen Fenster wählst du die Variablen aus, die du analysieren möchtest (Gewicht und Größe).

Kontrolliere, ob Pearson bei Korrelationskoeffizienten markiert ist, da du die lineare Korrelation ansehen möchtest.

Klicke auf Ok, um die Analyse durchzuführen. Du erhältst den Korrelationskoeffizienten, der immer zwischen -1 und 1 liegen muss.

Den Korrelationskoeffizienten in SPSS richtig interpretieren

Berechnest du den Korrelationskoeffizienten mit SPSS, erhältst du bei unserem Beispiel die folgende Tabelle:
Korrelationskoeffizient nach Pearson berechnen und interpretieren (5)

N = 30: Anzahl der befragten Personen (Stichprobe)
Korrelation nach Pearson = 0,909**: sehr hoher positiver Zusammenhang zwischen Gewicht und Größe
Signifikanz (2-seitig) = 0,000: SPSS gibt zusätzlich den p-Wert (Signifikanz) an. In unserem Beispiel liegt dieser Wert unter 0,05. Das bedeutet, dass die Nullhypothese (es besteht kein Zusammenhang zwischen Größe und Gewicht) verworfen werden kann

Kostenlos auf Plagiate prüfen.

Plagiatsprüfung testen

Formel zu Pearsons r

Um die Korrelation selbst zu berechnen, kannst du folgende Formel verwenden.

Formel zum Korrelationskoeffizient nach Pearson
Korrelationskoeffizient nach Pearson berechnen und interpretieren (6)
rKorrelationskoeffizient
xiBeobachtungswerte der Variable x
yiBeobachtungswerte der Variable y
Korrelationskoeffizient nach Pearson berechnen und interpretieren (7)Arithmetisches Mittel aller Wert von x
Korrelationskoeffizient nach Pearson berechnen und interpretieren (8)Arithmetisches Mittel aller Wert von y
NGesamtanzahl
sxyKovarianz der Variablen x und y
sxStandardabweichung der Variable x
syStandardabweichung der Variable y

Pearsons r richtig interpretieren

Der Korrelationskoeffizient nach Pearson kann Werte zwischen -1 und 1 annehmen.

Dabei enthält der r-Wert Informationen über a) die Richtung und b) die Stärke des Zusammenhangs.

Richtung des Zusammenhangs

Ein positiver Korrelationskoeffizient zeigt auf, dass ein positiver Zusammenhang zwischen den zwei Variablen besteht. Das bedeutet, dass, wenn der Wert der einen Variablen steigt, dies auch für die andere Variable der Fall ist.

Steigt die Variable „Größe”, steigt auch die Variable „Gewicht”.
Sinkt die Variable „Größe”, sinkt auch die Variable „Gewicht”.

Bei einem negativen Korrelationskoeffizienten verlaufen die Variablen gegenläufig. Wenn also der Wert der einen Variablen steigt, sinkt der Wert der anderen Variablen.

Steigt die Variable „Größe”, sinkt die Variable „Gewicht”.
Sinkt die Variable „Größe”, steigt die Variable „Gewicht”.

Stärke des Zusammenhangs

Um eine Aussage über die Stärke des Zusammenhangs zu treffen, können wir die Einteilung nach Cohen verwenden.

Dabei ist allerdings zu beachten, dass es sich um eine allgemeine Einteilung handelt und der Korrelationskoeffizient stets in Bezug zum Kontext interpretiert werden sollte, in dem er erhoben und bestimmt wurde.

Das Diagramm gibt dir einen Überblick über die Stärke des Zusammenhangs für deinen r-Wert.
Korrelationskoeffizient nach Pearson berechnen und interpretieren (9)
r = 0 → kein linearer Zusammenhang
r = 1 oder -1 → vollständiger linearer Zusammenhang

Voraussetzungen für den Korrelationskoeffizient nach Pearson

Den Korrelationskoeffizienten nach Pearson kannst du anwenden, wenn die folgenden Annahmen erfüllt sind:

  • Metrisches Skalenniveau
  • Normalverteilung der Daten
  • Linearer Zusammenhang zwischen den Variablen

Kostenlos auf Plagiate prüfen.

Plagiatsprüfung testen

Ergebnisse der Korrelation in der Abschlussarbeit zusammenfassen

Du beschreibst den Korrelationskoeffizienten im Ergebniskapitel deiner Bachelorarbeit oder Masterarbeit.

Für den Korrelationskoeffizienten nach Pearson verwendest du den Buchstaben r in Formeln und deinem Text.
  • Es besteht eine signifikante, sehr hohe positive Korrelation zwischen dem Gewicht und der Größe (r = .91; p < .001; N = 30).
  • Die Korrelation nach Pearson zeigt einen signifikanten hohen positiven Zusammenhang zwischen der Größe und dem Gewicht der befragten Personen (r = .91; p < .001; N = 30).

Häufig gestellte Fragen

Was sagt der Korrelationskoeffizient nach Pearson aus?

Der Korrelationskoeffizient nach Pearson gibt uns Auskunft über den Zusammenhang von zwei metrisch skalierten Variablen.

Ab wann ist meine Korrelation hoch?

Von einer hohen Korrelation wird bei einem r-Wert (Korrelationskoeffizient) zwischen 0.5 und 1 oder -0.5 und -1 gesprochen.

Wie kann ich den Korrelationskoeffizienten nach Pearson in Excel berechnen?

In Excel können wir den Korrelationskoeffizienten mit dem Befehl =KORREL() bestimmen. Gib dazu in den Klammern die Zellen an, für die du die Korrelation bestimmen möchtest. Trenne die Werte für die beiden Variablen mit einem Semikolon.

=KORREL(B2:B30;C2:C30)
Was ist der Unterschied zwischen der Pearson- und der Spearman-Korrelation?

Wann wir welchen Korrelationskoeffizienten verwenden, hängt vom Skalenniveau der Daten ab. Um die Korrelation nach Pearson zu berechnen, benötigen wir metrische Daten. Spearman‘s Rangkorrelationskoeffizienten verwenden wir für ordinalskalierte Daten.

Diesen Scribbr-Artikel zitieren

Wenn du diese Quelle zitieren möchtest, kannst du die Quellenangabe kopieren und einfügen oder auf die Schaltfläche „Diesen Artikel zitieren“ klicken, um die Quellenangabe automatisch zu unserem kostenlosen Zitier-Generator hinzuzufügen.

Benning, V. (2022, 14. Dezember). Korrelationskoeffizient nach Pearson berechnen und interpretieren. Scribbr. Abgerufen am 25. November 2024, von https://www.scribbr.de/statistik/korrelationskoeffizient/

Diesen Artikel zitieren

War dieser Artikel hilfreich?

Du hast schon abgestimmt. Danke :-) Deine Abstimmung wurde gespeichert :-) Abstimmung in Arbeit...

Korrelationskoeffizient nach Pearson berechnen und interpretieren (10)

Valerie Benning

Hi, ich bin Valerie und schreibe zur Zeit selbst meine Masterarbeit in Psychologie. Meine Erfahrungen aus dem Studium teile ich gerne, damit Studierenden statistische Themen leichter fallen.

Korrelationskoeffizient nach Pearson berechnen und interpretieren (2024)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Francesca Jacobs Ret

Last Updated:

Views: 6316

Rating: 4.8 / 5 (48 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Francesca Jacobs Ret

Birthday: 1996-12-09

Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

Phone: +2296092334654

Job: Technology Architect

Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.